Реферат Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіпербол


СкачатиСкачать (DOC|ZIP):
Поверхні обертання.Циліндричні та конічні поверхні. Канонічн

Пошукова робота

на тему:

Поверхні обертання.Циліндричні та конічні поверхні. Канонічні рівняння поверхонь другого порядку (сфера, еліпсоїд, гіперболоїди, еліптичний і гіперболічний параболоїди).

План

  • Поверхні обертання.
  • Циліндричні поверхні.
  • Конічні поверхні.
  • Еліпсоїд.
  • Однопорожнинний і двопорожнинний гіперболоїди.
  • Еліптичний та гіперболічний параболоїди.

3.7. Поверхні другого порядку

Розглянемо алгебраїчні поверхні другого порядку. Загальне рівняння такої поверхні має вигляд:

(3.44)

Опишемо важливі поверхні другого порядку. Скласти собі загальне представлення про більшість поверхонь другого порядку можна, розглянувши поверхні обертання ліній другого порядку навколо їх осей симетрії.

3.7.1. Поверхні обертання

Поверхня , утворена від обертання деякої плоскої лінії , що лежить в площині яка проходить через пряму , навколо цієї прямої, називається поверхнею обертання. Пряма називається віссю обертання. Кожна точка лінії при цьому опише коло (рис.3.25).

Виберемо прямокутну (не обов’язково прямокутну) декартову систему

координат причому вісь направимо вздовж а вісь помістимо в площині Нехай лінія від обертання якої одержана поверхня, має в цій системі координат рівняння

Розглянемо точку Через неї проходить коло, яке має центр на осі і лежить в площині, що

перпендикулярна цій осі. Рис.3.25

Радіус кола дорівнює віддалі від до осі, тобто Точка лежить на поверхні обертання тоді і тільки тоді, коли на даному колі буде точка що належить

лінії

Точка лежить в площині , тому Крім того, і оскільки точка лежить на колі, що проходить через Координати точки задовольняють рівнянню лінії Підставляючи в це рівняння і , ми отримаємо необхідну і достатню умову того, що точка лежить на поверхні

(3.45)

Рівняння (3.45) є рівнянням поверхні обертання лінії навколо осі

3.7.2. Конічні поверхні

Розглянемо на площині пару прямих, що перетинаються і які мають в системі координат рівняння Поверхня обертання цієї лінії навколо осі згідно формули (3.49) має рівняння

і носить назву прямого кругового конуса (рис.3.26).

Стиск (або розтяг ) по осі переводить прямий круговий конус в поверхню з рівнянням

(3.46)

яка називається конусом другого порядку. Конус складається із прямих, що проходять через початок координат. Переріз конуса

Рис.3.26 площинами , що перпендикулярні осі представляють собою еліпси

3.7.3. Еліпсоїд

Розглянемо поверхню, утворену від обертання еліпса навколо осі Така поверхня називається еліпсоїдом обертання, рівняння якої . Якщо кожну точку на

еліпсоїді обертання зсунемо до площини то всі точки еліпсоїда переходять в точки поверхні, що називається еліпсоїдом (рис.3.27). Рівняння еліпсоїда має вигляд Рис.3.27

(3.47)

Еліпсоїд представляє собою замкнуту поверхню з центром симетрії в початку координат. Еліпсоїд отримується із еліпсоїда обертання стиском так само, як і еліпс отримується стиском кола. Очевидно, коли всі півосі рівні, із (3.47) ми одержимо рівняння сфери

3.7.4. Однопорожнинний і двопорожнинний гіперболоїди

При обертанні гіперболи навколо осі (яка її не перетинає) одержимо поверхню, яка називається однопорожнинним гіперболоїдом обертання


СкачатиСкачати:Поверхні обертання.Циліндричні та конічні поверхні. Канонічн


Схожі реферати:
  • РЕФЕРАТ на тему: «Психологічні бар’єри у спілкуванні і шляхи їх подолання” ПЛАН 1. Поняття спілкування та бар'єрів спілк
  • РЕФЕРАТ на тему: Загальна характеристика м якотілих В сучасній фауні налічується близько 130 тис. видів молюсків, переважно мешканців водойм. Вони мають
  • The stylistic method of Bernard Shaw(реферат)
  • Загальна характеристика фінансових ринків у сучасній ринковій економіці Фінансовий ринок це відносини між населенням, підприємствами (філіями) і
  • Застосування багаторівневого маркетингу та його особливості (реферат)
  • Вітаміни, їх значення для вагітної та дитини (реферат)
  • Загартування водою (реферат)
  • Взаємозв'язок загальної, політехнічної та професійної освіти
  • Практика як специфічно людський спосіб освоєння світу (реферат)
  • Розпад імперської тоталітарної системи. Проголошення декларації про державний суверенітет України, події в серпні 1991 року (реферат)




  • Скористайтеся пошуком:
    Loading

    Пошук :

    0.032684