Реферат Диференціальні рівняння першого порядку. Задача Коші(пошукова робота)


СкачатиСкачать (DOC|ZIP):
Диференціальні рівняння першого порядку. Задача Коші(пошуков

Пошукова робота на тему:

Задачі геометричного і фізичного характеру, що приводять до диференціальних рівнянь. Диференціальні рівняння першого порядку. Задача Коші.

План

  • Вступні відомості про диференціальні рівняння
  • Задачі геометричного і фізичного характеру, що приводять до диференціальних рівнянь
  • Диференціальні рівняння першого порядку
  • Задача Коші
  • Геометрична інтерпретація диференціального рівняння першого порядку

12. ДИФЕРЕНЦІАЛЬНІ РІВНЯННЯ

12.1. Вступні відомості про диференціальні рівняння

Звичайним диференціальним рівнянням називається рівняння, яке зв’язує незалежну змінну , невідому функцію та її похідні. Найвищий порядок похідної від шуканої функції, що входить в диференціальне рівняння, називається його порядком. Отже, загальний вигляд диференціального рівняння -го порядку такий:

.

Найпростіші диференціальні рівняння вже розглядалися при вивченні інтегрального числення. Справді, нехай дано функцію . Знайдемо її визначений інтеграл. Маємо: і, отже, .

Інтегруючи, отримаємо:

,

де – довільна стала.

Виявляється, що будь-яке диференціальне рівняння також має безліч розв’язків виду , де – довільна стала

Розглянемо приклади.

Задача 1. Записати рівняння кривої, якщо відомо, що точка перетину будь-якої дотичної до кривої з віссю абсцис однаково віддалена від точки дотику та від початку координат.

Зробимо схематичний рисунок (рис.12.1). Нехай т. - це точка в якій проводимо дотичну. - точка перетину дотичної з віссю . За умовою відстані та рівні, тобто .

Тоді

Піднесемо до квадрату обидві частини рівності та спростимо отриманий вираз

Запишемо рівняння дотичної:

де - координати точки дотику.

Рис.12.1

Точки і належать дотичній, причому т. - це точка дотику. Якщо т. належить дотичній, то її координати мають задовольняти рівняння дотичної. Підставимо координати точок та в рівняння дотичної:

Звідси виразимо :

Тоді

Після нескладних перетворень отримаємо диференціальне рівняння першого порядку

Всяка функція вигляду задовольняє даному диференціальному рівнянню, тобто є його розв’язком при довільному значенні

Приклад 2. З деякої висоти кинуто тіло масою Потрібно встановити, за яким законом буде змінюватися швидкість падіння цього тіла, якщо на нього, крім сили ваги, діє тормозна сила опору повітря, що пропорційна швидкості (коефіцієнт пропорційності ).

Р о з в ‘ я з о к. За другим законом Ньютона

де прискорення рухомого тіла, сила, що діє на тіло в напрямку його руху. Ця сила складається з двох сил: сили ваги і сили опору повітря ( ми беремо її із знаком мінус, оскільки вона направлена в сторону, що протилежна напрямку швидкості).Отже,

Ми одержали співвідношення, що зв’язує невідому функцію і її похідну, тобто диференціальне рівняння відносно функції

Розв’язати диференціальне рівняння – це значить знайти функцію , яка б тотожньо задовольняла даному диференціальному рівнянню. Очевидно, що таких функцій буде безмежна множина.

Неважко перевірити, що всяка функція вигляду

задовольняє даному рівнянню при довільному значенні постійної


СкачатиСкачати:Диференціальні рівняння першого порядку. Задача Коші(пошуков


Схожі реферати:
  • Особливості пам'яті та уваги дітей молодшого шкільного віку (Реферат)
  • Урок навчання грамоти, 1 клас (реферат)
  • Стан та перспективи міжнародного співробітництва України в енергетичній сфері (реферат)
  • Кантата "Дніпро реве" Дениса Січинського (реферат)
  • Управління персоналом та кадрова політика на підприємстві На рівні підприємства замість терміну "трудові ресурси" використовують терміни "кадри"
  • Дигенетичні і моногенетичні трематоди (смоктальні черви). Особливість життєдіяльності стьожкових червів. Представники. Ціп як ПЛАН 1.
  • Дослідження космічного простору. Радіолокація
  • Поняття громадянського суспільства, всеукраїнський референдум, гарантії місцевого самоврядування (контрольна)
  • Біологічна дія іонізуючого випромінювання Природа дії іонізуючого випромінювання на живу речовину досить складна і багатопланова. Проаналіз




  • Скористайтеся пошуком:
    Loading

    Пошук :

    0.038182